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1 Introduction

The purpose of this paper is to construct Clifford
algebra Cl3,0 -valued wavelets using the similitude
group SIM(3) and then give a detailed explana-
tion of their properties using the Clifford Fourier
transform. Our approach can generalize complex
Gabor wavelets to multivectors called Clifford Ga-
bor wavelets. Finally, we describe some of their
important properties which we use to establish a
new uncertainty principle for the Clifford Gabor
wavelet transform.

2 Preliminaries

Let us consider an orthonormal basis {e1, e2, e3}
of the real 3D Euclidean vector space R3. The
geometric algebra over R3 denoted by Cl3,0 then
has the graded 23 = 8-dimensional basis

{1, e1, e2, e3, e12, e31, e23, e123 = i3}. (1)

By convention the geometric product obeys

ei ej + ej ei = 2δij , i, j = 1, 2, 3.

We introduce an inner product of functions f, g
defined on R3 with values in Cl3,0

〈f, g〉L2(R3;Cl3,0) =
∫

R3
f(x)g̃(x) d3x

=
∑
A,B

eAẽB

∫
R3
fA(x)gB(x) d3x, (2)

where g̃(x) =
∑
B gB(x)ẽB , and ẽB is reverse of

eB of (1) formed by writing all its vector factors
in reverse order.

Definition 1 The Clifford Fourier transform [1]
of f(x) ∈ L2(R3;Cl3,0),

∫
R3

√
f ∗ fd3x < ∞ is

the function F{f}: R3 → Cl3,0 given by

F{f}(ω) = f̂(ω) =
∫

R3
f(x) e−i3ω·x d3x, (3)

where ω = ω1e1 + ω2e2 + ω3e3 , and ω · x =
ω1x1 + ω2x2 + ω3x3.

Theorem 1 The Clifford Fourier transform
F{f} of f ∈ L2(R3;Cl3,0) is invertible and its
inverse is calculated by

f(x) =
1

(2π)3

∫
R3
F{f}(ω) ei3ω·x d3ω. (4)

3 Clifford algebra Cl3,0-valued
wavelet transform

Let us define the following unitary linear operator

Ua,θ,b : L2(R3;Cl3,0) −→ L2(R3;Cl3,0)

ψ(x) −→ Ua,θ,bψ(x)

= ψa,θ,b(x), (5)

where

ψa,θ,b(x) =
1
a

3
2
ψ(r−1

θ
(
x− b

a
)). (6)

We call ψ ∈ L2(R3;Cl3,0) admissible wavelet (see
[2, 5]) if

Cψ =
∫

R+

∫
S0(3)

a3{ψ̂(ar−1

θ
(ω))}∼ψ̂(ar−1

θ
(ω)) dµ,

(7)
is an invertible multivector constant and finite at
a.e. ω ∈ R3. In this case dµ(a,θ) = dadθ

a4 , and dθ
is the left Haar measure on SO(3).
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Definition 2 We define the Clifford wavelet
transform with respect to the mother wavelet ψ ∈
L2(R3;Cl3,0) as follows

Tψ : L2(R3;Cl3,0) → L2(R3;Cl3,0)
f → Tψf(a,θ, b)

=
∫

R3
f(x) ˜ψa,θ,b(x) d3x

= 〈f, ψa,θ,b〉L2(R3;Cl3,0).(8)

Theorem 2 Let ψ ∈ L2(R3;Cl3,0) be an ad-
missible Clifford mother wavelet and f, g ∈
L2(R3;Cl3,0) arbitrary. Then we have

〈Tψf, Tψg〉L2(G;Cl3,0) = 〈fCψ, g〉L2(R3;Cl3,0). (9)

Theorem 3 (Inverse Clifford Cl3,0 wavelet
transform) Let ψ ∈ L2(R3;Cl3,0) be a Clifford
mother wavelet that satisfies the admissibility
condition (7). Then any f ∈ L2(R3;Cl3,0) can be
decomposed as

f(x) =
∫
G
Tψf(a, b,θ)ψa,θ,b C

−1
ψ dµd3b. (10)

4 Clifford Gabor wavelets

Complex Gabor wavelets can be extended to mul-
tivectors. They take the form

ψc(x) = g(x;σ1, σ2, σ3)× (11)(
ei3ω0·x − e−

1
2 (σ2

1u
2
0+σ

2
2u

2
0+σ

2
3w

2
0)

)
= g(x;σ1, σ2, σ3) ei3ω0·x − η(x), (12)

where the correction term η [3] is defined by

η(x) = g(x;σ1, σ2, σ3)e−
1
2 (σ2

1u
2
0+σ

2
2u

2
0+σ

2
3w

2
0),

and g(x;σ1, σ2, σ3) is a 3D Gaussian function.
The admissibility constant (7) will be real-

valued, i.e.

Cψc =
∫

R+

∫
SO(3)

a3|F{ψc}(ar−1

θ
(ω)|2dµ <∞,

(13)
is a real constant and finite at a.e. ω ∈ R3.

5 Uncertainty inequality for
Clifford Gabor wavelets

It is known that the uncertainty principle plays
an important role in the development and under-
standing of quantum physics. In quantum physics

it states e.g. that particle momentum and position
cannot be simultaneously measured with arbitrary
precision. In classical harmonic analysis the un-
certainty principle establishes for a function and
its Fourier transform a minimum of the products
of the variances. Here we will see how the Clifford
Gabor wavelet transform and the Clifford Fourier
transform of a multivector function are related.

Theorem 4 (Uncertainty principle for Clifford
Gabor wavelet) Let ψc be an admissible Clifford
Gabor wavelet. Assume ‖f‖2

L2(R3;Cl3,0)
= F < ∞

for every f ∈ L2(R3;Cl3,0), then the following in-
equality holds

‖bTψcf(a,θ, b)‖2
L2(G;Cl3,0)

×

‖ωf̂‖2
L2(R3;Cl3,0)

≥ 3Cψc

(2π)3

4
F 2.
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